Single Pore Engineering & Measurement of Permeation Rates via Visualisation

G.A. Mutch,¹ S. Tsochataridou,¹ E.I. Papaioannou,¹ D. Neagu,¹ R.I. Merino,² M.L. Sanjuan,² V.M. Orera,² I.S. Metcalfe¹ ¹ School of Engineering, Newcastle University, United Kingdom. ² Instituto de Ciencia de Materiales Aragon, CSIC-Universidad de Zaragoza, Spain.

Zaragoza

BRITISH

How do we measure permeation in the lab?

Why do we measure permeation in this way?

Can we do better?

Background to single pore engineering.

Present a new method for measuring permeation rates.

Dual Phase Membranes

NOx separation.

CO_2 separation.

As with <u>any membrane</u>, the development of rigorous permeation data is necessary for scale-up – e.g. flux – driving force relationship.

50% CO₂/N₂

Laboratory

Ar

Can we do better?

Single Pore Engineering

Can we do better?

(a) YSZ single crystal (5 mm x 5 mm x 1 mm) and (b) laser drilled single pores.

Looking Inside

Conclusions

- **Dual Phase Membranes**
- Visualisation
- Single Pore Engineering
- Value

Promising CO₂ separation.

Look <u>inside</u> membranes.

Applicable to any liquid. Allows *in-situ* spectroscopy. Difficult but <u>real</u> driving forces. G.A.M. thanks the EPSRC for a Doctoral Prize Fellowship (EP/M50791X/1). The research leading to these results has received funding from the European Research Council under the European Union's Seventh Framework Program (FP/2007-2013)/ERC Grant Agreement number 320725 and EPSRC via Grants EP/M01486X/1, EP/P007767/1 and EP/P009050/1.

European Research Council Established by the European Commission

References:

G. Zhang, E.I. Papaioannou & I.S. Metcalfe, "<u>Selective, high-temperature permeation of nitrogen oxides</u> using a supported molten salt membrane" *Energy Environ. Sci.*, 2015, **8**, 1220.

E.I. Papaioannou, H. Qi & I.S. Metcalfe, "<u>Uphill' permeation of carbon dioxide across a composite molten</u> salt-ceramic membrane" *J. Membr. Sci.*, 2015, **485**, 87.